z^3+(1-i)*z^2+(2i-1)*z+(i+3)=0

Simple and best practice solution for z^3+(1-i)*z^2+(2i-1)*z+(i+3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^3+(1-i)*z^2+(2i-1)*z+(i+3)=0 equation:


Simplifying
z3 + (1 + -1i) * z2 + (2i + -1) * z + (i + 3) = 0

Reorder the terms for easier multiplication:
z3 + z2(1 + -1i) + (2i + -1) * z + (i + 3) = 0
z3 + (1 * z2 + -1i * z2) + (2i + -1) * z + (i + 3) = 0

Reorder the terms:
z3 + (-1iz2 + 1z2) + (2i + -1) * z + (i + 3) = 0
z3 + (-1iz2 + 1z2) + (2i + -1) * z + (i + 3) = 0

Reorder the terms:
z3 + -1iz2 + 1z2 + (-1 + 2i) * z + (i + 3) = 0

Reorder the terms for easier multiplication:
z3 + -1iz2 + 1z2 + z(-1 + 2i) + (i + 3) = 0
z3 + -1iz2 + 1z2 + (-1 * z + 2i * z) + (i + 3) = 0

Reorder the terms:
z3 + -1iz2 + 1z2 + (2iz + -1z) + (i + 3) = 0
z3 + -1iz2 + 1z2 + (2iz + -1z) + (i + 3) = 0

Reorder the terms:
z3 + -1iz2 + 1z2 + 2iz + -1z + (3 + i) = 0

Remove parenthesis around (3 + i)
z3 + -1iz2 + 1z2 + 2iz + -1z + 3 + i = 0

Reorder the terms:
3 + i + 2iz + -1iz2 + -1z + 1z2 + z3 = 0

Solving
3 + i + 2iz + -1iz2 + -1z + 1z2 + z3 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-3' to each side of the equation.
3 + i + 2iz + -1iz2 + -1z + 1z2 + -3 + z3 = 0 + -3

Reorder the terms:
3 + -3 + i + 2iz + -1iz2 + -1z + 1z2 + z3 = 0 + -3

Combine like terms: 3 + -3 = 0
0 + i + 2iz + -1iz2 + -1z + 1z2 + z3 = 0 + -3
i + 2iz + -1iz2 + -1z + 1z2 + z3 = 0 + -3

Combine like terms: 0 + -3 = -3
i + 2iz + -1iz2 + -1z + 1z2 + z3 = -3

Add 'z' to each side of the equation.
i + 2iz + -1iz2 + -1z + 1z2 + z + z3 = -3 + z

Reorder the terms:
i + 2iz + -1iz2 + -1z + z + 1z2 + z3 = -3 + z

Combine like terms: -1z + z = 0
i + 2iz + -1iz2 + 0 + 1z2 + z3 = -3 + z
i + 2iz + -1iz2 + 1z2 + z3 = -3 + z

Add '-1z2' to each side of the equation.
i + 2iz + -1iz2 + 1z2 + -1z2 + z3 = -3 + z + -1z2

Combine like terms: 1z2 + -1z2 = 0
i + 2iz + -1iz2 + 0 + z3 = -3 + z + -1z2
i + 2iz + -1iz2 + z3 = -3 + z + -1z2

Add '-1z3' to each side of the equation.
i + 2iz + -1iz2 + z3 + -1z3 = -3 + z + -1z2 + -1z3

Combine like terms: z3 + -1z3 = 0
i + 2iz + -1iz2 + 0 = -3 + z + -1z2 + -1z3
i + 2iz + -1iz2 = -3 + z + -1z2 + -1z3

Reorder the terms:
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = -3 + z + -1z2 + -1z3 + 3 + -1z + z2 + z3

Reorder the terms:
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = -3 + 3 + z + -1z + -1z2 + z2 + -1z3 + z3

Combine like terms: -3 + 3 = 0
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = 0 + z + -1z + -1z2 + z2 + -1z3 + z3
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = z + -1z + -1z2 + z2 + -1z3 + z3

Combine like terms: z + -1z = 0
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = 0 + -1z2 + z2 + -1z3 + z3
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = -1z2 + z2 + -1z3 + z3

Combine like terms: -1z2 + z2 = 0
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = 0 + -1z3 + z3
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = -1z3 + z3

Combine like terms: -1z3 + z3 = 0
3 + i + 2iz + -1iz2 + -1z + z2 + z3 = 0

The solution to this equation could not be determined.

See similar equations:

| y=-13x+46 | | y^4+y^2+1=0 | | 4(3a-9)=84 | | h=(15/8)/(45/16) | | z^3+z^2-z+3=0 | | 6v^2-v=15 | | x+.33x=600000 | | 2x+3(x+6)=90 | | 4x-(4-2x)=5x | | .33x=600000 | | 30=(3w-1)w | | 4x^2-65=-7x | | 4x-(4-4x)=5x | | 4x-(4-3x)=5x | | 0.4X+0.6=-0.6-0.2X | | 5x+14x=180 | | (X+(0.10X))+(Y+(0.04Y))=523 | | g=(12/25)/(6/50) | | 36x^2-x^2=62 | | (4x+1)(2x+6)=0 | | 15x-5=13x-9 | | 3k^2=28+8k | | 3w-45=42 | | 5q-8=-2q+48 | | 16x+24y=20 | | 7x-1=1-7x | | -6=14+x | | 5=(-5a)+5 | | 5n^2-7n=4n^2-6 | | 5x-12x=32 | | B^2+33=12b+1 | | x^2+2a+(2a-1)=0e |

Equations solver categories